29 research outputs found

    Past 140-year environmental record in the northern South China Sea: Evidence from coral skeletal trace metal variations

    Get PDF
    About 140-year changes in the trace metals in Porites coral samples from two locations in the northern South China Sea were investigated. Results of PCA analyses suggest that near the coast, terrestrial input impacted behavior of trace metals by 28.4%, impact of Sea Surface Temperature (SST) was 19.0%, contribution of war and infrastructure were 14.4% and 15.6% respectively. But for a location in the open sea, contribution of War and SST reached 33.2% and 16.5%, while activities of infrastructure and guano exploration reached 13.2% and 14.7%. While the spatiotemporal change model of Cu, Cd and Pb in seawater of the north area of South China Sea during 1986-1997 were reconstructed. It was found that in the sea area Cu and Cd contaminations were distributed near the coast while areas around Sanya, Hainan had high Pb levels because of the well-developed tourism related activities. (C) 2013 Elsevier Ltd. All rights reserved

    Integrated Assessment of Heavy Metal Contamination in Sediments from a Coastal Industrial Basin, NE China

    Get PDF
    The purpose of this study is to investigate the current status of metal pollution of the sediments from urban-stream, estuary and Jinzhou Bay of the coastal industrial city, NE China. Forty surface sediment samples from river, estuary and bay and one sediment core from Jinzhou bay were collected and analyzed for heavy metal concentrations of Cu, Zn, Pb, Cd, Ni and Mn. The data reveals that there was a remarkable change in the contents of heavy metals among the sampling sediments, and all the mean values of heavy metal concentration were higher than the national guideline values of marine sediment quality of China (GB 18668-2002). This is one of the most polluted of the world’s impacted coastal systems. Both the correlation analyses and geostatistical analyses showed that Cu, Zn, Pb and Cd have a very similar spatial pattern and come from the industrial activities, and the concentration of Mn mainly caused by natural factors. The estuary is the most polluted area with extremely high potential ecological risk; however the contamination decreased with distance seaward of the river estuary. This study clearly highlights the urgent need to make great efforts to control the industrial emission and the exceptionally severe heavy metal pollution in the coastal area, and the immediate measures should be carried out to minimize the rate of contamination, and extent of future pollution problems

    Effects of anthropogenic activities on the heavy metal levels in the clams and sediments in a tropical river

    Get PDF
    The present study aimed to assess the effects of anthropogenic activities on the heavy metal levels in the Langat River by transplantation of Corbicula javanica. In addition, potential ecological risk indexes (PERI) of heavy metals in the surface sediments of the river were also investigated. The correlation analysis revealed that eight metals (As, Co, Cr, Fe, Mn, Ni, Pb and Zn) in total soft tissue (TST) while five metals (As, Cd, Cr, Fe and Mn) in shell have positively and significantly correlation with respective metal concentration in sediment, indicating the clams is a good biomonitor of the metal levels. Based on clustering patterns, the discharge of dam impoundment, agricultural activities and urban domestic waste were identified as three major contributors of the metals in Pangsun, Semenyih and Dusun Tua, and Kajang, respectively. Various geochemical indexes for a single metal pollutant (geoaccumulation index (I geo), enrichment factors (EF), contamination factor (C f) and ecological risk (Er)) all agreed that Cd, Co, Cr, Cu, Fe, Mn, Ni and Zn are not likely to cause adverse effect to the river ecosystem, but As and Pb could pose a potential ecological risk to the river ecosystem. All indexes (degree of contamination (C d), combined pollution index (CPI) and PERI) showed that overall metal concentrations in the tropical river are still within safe limit. River metal pollution was investigated. Anthropogenic activities were contributors of the metal pollution. Geochemical indexes showed that metals are within the safe limit

    Heavy metals in sediment cores from a tropical estuary affected by anthropogenic discharges: Coatzacoalcos estuary, Mexico

    No full text
    Large scale industrial development has taken place in the Coatzacoalcos river estuary, SE Mexico, over the last 32 years, and the area is now regarded as the most polluted coastal area of Mexico. A series of sediment cores were taken from the lower Coatzacoalcos river and the estuary, and the concentrations of trace elements (Zn, Co, Cu, Cr, Ni, Pb, V), major elements (Al, Si, Mn, Fe, Ti, Ca, Mg, Na, K, P) and organic matter determined. Heavy metal concentration seems to be largely dependant on proximity to industrial areas, with highest metal concentrations (particularly for Zn, Ni and Cu) found at Teapa, the most heavily industrialized site, and lowest values found at Jicaro, upstream of the main industrial areas. At all of the sites examined, heavy metals either show a relatively uniform distribution with depth, or subsurface maxima, which reflect changes in sediment composition. There is little evidence for significant early-diagenetic remobilization at any of the sites studied. 210Pb and 137Cs data at Teapa indicate that the sediments have accreted rapidly and may be vigorously mixed, and so these sediment cores cannot be used to reliably reconstruct temporal changes in pollutant input

    Lagoonal sediments as indicators of coseismic uplift around Acapulco, Mexico.

    No full text
    No description supplie
    corecore